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The depletion potential between two hard spheres in a solvent of thin hard disclike platelets is investigated
by using either the Derjaguin approximation or density functional theory. Particular attention is paid to the
density dependence of the depletion potential. A second-order virial approximation is applied, which yields
nearly exact results for the bulk properties of the hard-platelet fluid at densities two times smaller than the
density of the isotropic fluid at isotropic-nematic phase coexistence. As the platelet density increases, the
attractive primary minimum of the depletion potential deepens and an additional small repulsive barrier at
larger sphere separations develops. Upon decreasing the ratio of the radius of the spheres and the platelets, the
primary minimum diminishes and the position of the small repulsive barrier shifts to smaller values of the
sphere separation.
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I. INTRODUCTION

Depletion interactions between big colloidal particles in-
duced by smaller particles, which can be either the solvent
particles or a colloidal component of its own, are of signifi-
cant current research interest because of the importance of
these effective interactions in various colloidal processes.
For example, flocculation of colloids can be driven by the
addition of nonadsorbing polymers via the depletion mecha-
nism [1]. Whereas experimental and theoretical studies have
focussed on binary hard-sphere fluids as well as on colloidal
mixtures of hard spheres and hard rods or polymers, less
attention has been paid to hard platelets acting as depletants,
despite the great importance of colloidal platelets such as
blood platelets and clay minerals in both biomedicine and
geophysics. Very recently a colloidal mixture of silica
spheres and silica coated gibbsite platelets has been stabi-
lized for the first time[2], and the depletion potential due to
the presence of thin hard platelets has been derived theoreti-
cally for noninteracting platelets corresponding to the limit
of infinite dilution [2,3]. It has been found that the Derjaguin
approximation for the depletion potential yields accurate re-
sults for noninteracting platelets provided the ratio of the
radius of the spheres and the platelets is large[2].

In this paper we focus on the depletion interaction in-
duced by thin hard platelets, taking into account the steric
interactions between the platelets in terms of a second-order
virial approximation. On the basis of our recent theoretical
studies on fluids of thin hard platelets near hard walls[4,5],
we expect that excluded volume interactions between the
platelets influence the depletion interaction already at rather
low platelet densities due to their cumbrous shape as com-
pared with spherical or rodlike depletants. Taking excluded
volume interactions into account is particularly interesting
because correlation effects may cause repulsive features of
depletion forces which are important in the context of colloi-
dal stability [6]. In the present paper we use density func-
tional theory (Sec. II) to study the depletion potential be-
tween two hard spheres induced by thin hard platelets(Sec.
III ). Particularly, we compare the results with the ones ob-
tained for noninteracting platelets.

II. DENSITY FUNCTIONAL THEORY

We consider an inhomogeneous fluid consisting of thin
platelets of radiusRp in a container of volumeV. The plate-
lets are taken to be hard discs without additional attractive or
repulsive interactions. The number density of the centers of
mass of the platelets at a pointr with an orientationv
=su ,fd of the normal of the platelets is denoted byrsr ,vd.
The equilibrium density profile of the inhomogeneous liquid
under the influence of an external potentialVsr ,vd mini-
mizes the grand potential functional

Vfrsr ,vdg =E dr3 dv rsr ,vdfkBTslnf4pL3rsr ,vdg − 1d − m

+ Vsr ,vdg + Fexfrsr ,vdg, s1d

whereL is the thermal de Broglie wavelength andm is the
chemical potential. The free energy functionalFexfrsr ,vdg in
excess of the ideal gas contribution has not been taken into
account in previous studies on the depletion force due to
platelets[2,3]. We express the excess free energy functional
as an integral over all possible configurations of two platelets

Fexfrsr ,vdg = −
kBT

2
E dr1

3 dv1 dr2
3 dv2 rsr 1,v1d

3fppsr 12,v1,v2drsr 2,v2d, s2d

wherer 12=r 1−r 2 and fppsr 12,v1,v2d is the Mayer function
of the interaction potential between two platelets. The Mayer
function equals −1 if the platelets overlap and is zero other-
wise. Explicit expressions of the Mayer function for thin
platelets are documented in Refs.[4,7].

For the homogeneous and isotropic bulk fluid the grand
potential functional[Eq. (1)] reduces to

Vb

V
= rbfkBTslnfL3rbg − 1d − mg +

p2

2
Rp

3rb
2kBT, s3d

where rb=V−1edr3 dv rsr ,vd is the total particle number
density. The equation of state derived from the grand poten-
tial [Eq. (3)] takes the following form:
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pb
! = rb

!S1 +
p2

2
rb

!D s4d

with rb
!=rbRp

3 andpb
!=pbRp

3/ skBTd. The same equation with-
out the second term in parenthesis holds for the ideal gas
limit (i.e., noninteracting platelets). With increasing particle
number density the ideal gas equation of state on one side
and the second-term virial series[Eq. (4)] as well as com-
puter simulation data[7–9] on the other side deviate. Thus
for rb

!=0.1 the osmotic pressurepb
!=0.15, as calculated from

Eq. (4), agrees exactly with simulation data, while the ideal
gas equation of state underestimates the osmotic pressure by
a factor of 1.5. The comparison of the calculated equation of
state with computer simulation data exhibits that the two-
term series in Eq.(4) is a good approximation forrb

!&0.2,
whereas the ideal gas model may be used for very low par-
ticle number densitiesrb

!&0.04. For a discussion of higher-
order virial terms for fluids consisting of hard platelets we
refer to Refs.[4,10–12]. In the present study we restrict our
attention to particle number densitiesrb

!ø0.2 for which the
second-order virial approximation is appropriate and the
platelet fluid is in the isotropic phase. For comparison, the
isotropic-nematic phase transition is first order with coexist-
ence densitiesrbIRp

3=0.46 andrbNRp
3=0.5 according to a

computer simulation[9].

III. THE PLATELET-INDUCED DEPLETION POTENTIAL
BETWEEN TWO SPHERES

The results of the preceding section show that intermo-
lecular interactions between platelets increase the osmotic
pressure of the bulk fluid already at low particle densities.
Now we study the influence of intermolecular interactions on
the depletion potential between two hard spheres of radiusRs
immersed in a fluid of hard platelets of radiusRp. The deple-
tion potentialWshd is the free energy difference between the
configurations of two big spheres at fixed distanceh im-

mersed in the solvent and at macroscopic separationh=`
(see Fig. 1).

A. The Derjaguin approximation

The depletion potentialWshd between two hard spheres at
close distance due to the presence of small plateletssRp

!Rsd can be calculated from the finite-size contribution of
the grand potential functionvsh8d of the platelet fluid con-
fined between two parallel hard walls at distanceh8 using the
Derjaguin approximation[13]

WDerjshd = pRsE
h

`

dh8 vsh8d, s5d

whereh is the separation between the surfaces of the spheres.
(For the subtle issue of the range of validity of the Derjaguin
approximation see Refs.[14,15].)

We first consider a hard-platelet fluid confined by two
parallel hard walls atz=0 andz=h, and calculate the surface
and finite size contributions to the grand potential defined via

Vfrsz,u,fdg = Vvb + 2Ag + Avshd, s6d

whereA is the area of a single surface,vb is the bulk grand
canonical potential density, andV is defined as the volume of
the container with its surface given by the position of the rim
of the particles at closest approach so thatV=Ah. g is the
wall-liquid surface tension in the absence of the second wall
andvshd is the finite-size contribution. Figure 2 displays the
calculated surface and finite-size contributions to the grand
potential together with the results for noninteracting platelets
[2,3]

FIG. 1. The system under consideration consists of two hard
spheres of radiusRs immersed in a solvent of hard platelets of
radius Rp. The separation between the surfaces of the spheres is
denoted byh. Only the projection of the spheres on the plane of the
figure is shown. FIG. 2. The surface and finite-size contribution 2g+vshd to the

grand potential as obtained from Eqs.(1), (2), and(6) (solid lines)
of a fluid consisting of thin hard platelets of radiusRp confined in a
slit of width h and in contact with an isotropic bulk reservoir at
densityrb. The dashed lines represent the corresponding results for
an ideal gas of platelets[see Eq.(7)]. The width of the slit increases
from bottom to top:h/Rp=0.5,1.5.
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f2g + vshdgideal

kBT
=5rbRpFarcsinS h

2Rp
D +

h

2Rp
Î1 −S h

2Rp
D2G , 0 ø h ø 2Rp

p

2
rbRp =

2gideal

kBT
, h ù 2Rp.

s7d

As is apparent from Fig. 2 the steric interaction between the
platelets increases the surface contributions with increasing
density. Within our numerical precision, we found that an
accurate evaluation of the wall-liquid surface tensiong could
be achieved for a fixed wall separationh=4Rp at all consid-
ered densitiesrbRp

3ø0.2. For much higher densities, a larger
value of h might be required because of the wetting of the
wall-isotropic liquid interface by a nematic film of diverging
thickness[5]. On the other hand the wall-liquid surface ten-
sion gideal/ skBTd=rbRpp /4 for noninteracting platelets fol-
lows from Eq. (7) for a wall separationh=2Rp. For a de-
tailed discussion of the surface tension and the excess
coverage as well as the density and orientational order pa-
rameter profiles of fluids consisting of thin hard platelets
near a single hard wall we refer to Ref.[4]. The results for
the finite-size contributionvshd are shown in Fig. 3(a). As
function of h the finite-size contribution corresponds to the
solvation free energy for the immersed two plates acting as
the confining walls for the fluid and, by construction,vs0d

=−2g andvs`d=0. Upon increasing the platelet density, the
attractive minimum ofvshd at h=0 deepens and a maximum
at larger values ofh develops. The corresponding solvation
force per unit areafshd=−dvshd /dh is attractive for small
slit widths h as is shown in Fig. 3(b). Upon increasing the
platelet density, the cusp of the solvation force ath=2Rp

sharpens. For comparison we note that the maximum at the
cusp is more pronounced for the confined platelet fluid than
for a corresponding rod fluid[6] due to the relatively larger
steric interactions between platelets as compared with those
between rods. Moreoverfshd is a convex function for slit
widths smaller than two times the radius of the platelets,
while the solvation force in a solvent of hard rods is a con-
cave function for slit widths smaller than the length of the
rods [6]. Figure 4 displays the depletion potential together
with the results for noninteracting platelets which can be
calculated analytically from Eqs.(5) and (7) [2,3]:

WDerj
sideald

kBT
= 5− prbRp

2RsS h

Rp
arcsinS h

2Rp
D +

4

3
Î1 −S h

2Rp
D2S1 +

h2

8Rp
2D −

ph

2Rp
D , 0 ø h ø 2Rp

0, h ù 2Rp.

s8d

The depletion potential due to the presence of interacting
platelets exhibits a small barrier at larger sphere separations
h in addition to the primary minimum ath=0. With increas-
ing platelet density the depletion potential deepens and the
position of the maximum shifts to smaller values ofh. The
small repulsive barrier will have minor effects on kinetic
stabilization, although the repulsive features might still be
measurable. For example, our numerical calculations exhibit
a maximum barrier height of 0.25kBT relative to zero at a
density of rbRp

3=0.2 in a system of size ratioRs/Rp=3.5
corresponding to the aforementioned mixture of silica
spheres and gibbsite platelets[2]. In order to examine the
influence of steric interactions between platelets on thermo-
dynamic properties of sphere-platelet mixtures, we treat the
depletion potential as a perturbation to the hard-sphere po-
tential. The first-order approximation in this thermodynamic

perturbation approach for the Helmholtz free energy per
sphere is

fsrs,rbd = f shsdsrsd + 2prsE
2Rs

`

dr r2Wsr − 2Rsdgshsdsr,rsd,

s9d

where gshsdsr ,rsd is the radial distribution function of the
pure sphere fluid andf shsdsrsd is the Helmholtz free energy
per sphere for the same homogeneous fluid of densityrs. In
the limit Rs@Rp the radial distribution functiongshsdsr ,rsd is
almost constant over the range of integration whereWsr
−2RsdÞ0 and we can approximate it by its constant contact
valuegshsds2Rs,rsd [16]. Using Eq.(8) the resulting integral
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in Eq. (9) can be evaluated analytically for noninteracting
platelets:

ADerj
sideald ; 2prsE

2Rs

`

dr r2WDerj
sidealdsr − 2Rsd

kBT
=

− 2p2rbRp
3rsRs

3Sp +
64

45

Rp

Rs
+

p

12

Rp
2

Rs
2D . s10d

The integrated strength of the depletion potentialADerj
sideald is

negative, reflecting the fact the depletion potential is always
attractive(Fig. 4). A numerical calculation of the correspond-
ing quantity ADerj for interacting platelets exhibits that the
steric interacting between the platelets weakens the inte-
grated strength of the depletion potential by 22% at a bulk
densityrbRp

3=0.2. Hence the influence of steric interactions
between platelets might be quite visible for phase equilibria.
For example, the thermodynamic onset of flocculation of col-
loidal spheres induced by the depletion effect will be reduced
due to platelet interactions.

In order to elucidate a possible depletion induced phase
separation, we have calculated the second virial coefficient
of the fluid mixture according toB2=B2

sHSd+2pe2Rs

` dr r2s1

−expf−Wsr −2Rsd / skBTdgd, whereB2
sHSd=16pRs

3/3 is the sec-
ond virial coefficient of the pure hard-sphere system. With
increasing platelet density, the second virial coefficient ex-
hibits a change of sign, signalling the possibility of a gas-
liquid coexistence of a “liquid phase” rich in spheres(poor in
platelets) and a “gas phase” that is poor in spheres(rich in
platelets) in agreement with a recent free-volume scaled-
particle approach[17].

B. Density functional approach

A general approach for calculating the depletion potential
is based on a density functional theory(DFT) for a mixture
of hard spheres and the particles acting as depletants[18,19].
This approach avoids the Derjaguin approximation. The
depletion potentialWsr d is defined as the difference of the
grand potential between a configuration in which the sphere
acting as test particle is in the vicinity of another fixed sphere
and one in which the former sphere is deep in the bulk. This
grand potential difference can be expressed in terms of the
difference of one-body direct correlation functions:

Wsr d
kBT

= cs
s1ds`d − cs

s1dsr d. s11d

DFT provides a route to the depletion potential since

FIG. 3. (a) The finite-size contributionvshd to the grand poten-
tial as obtained from Eqs.(1), (2), and (6) of a fluid consisting of
thin hard platelets of radiusRp confined in a slit of widthh for three
values of the density of the isotropic bulk reservoir:rb

!=rbRp
3

=0.05 (dotted line); rb
!=0.1 (dashed line); rb

!=0.2 (solid line). (b)
The solvation force per unit areafshd=−dvshd /dh of the same fluid
[with the same line code as in(a)] as a function ofh.

FIG. 4. Depletion potentialWDerjshd between two hard spheres
of radius Rs=3.5Rp due to the presence of thin hard platelets of
radiusRp as obtained from the Derjaguin approximation[Eq. (5)]
for various bulk densities rb of the platelets: rb

!=rbRp
3

=0.02 (top curves); rb
!=0.08 (middle curves); rb

!=0.2 (bottom
curves). The solid lines(with dots marking the maxima) represent
the calculations for interacting platelets and the dashed lines denote
the results for noninteracting platelets. For reasons of clarity, the
lower four curves are shifted down by −0.3kBT and −0.9kBT, re-
spectively. The dashed lines are zero forh/Rpù2. Although the
interactions have only minor influence on the depth of the primary
minimum, the depletion potential becomes significantly less attrac-
tive for increasing densitiesrb. This weakens the platelet induced
flocculation of a solution of big spheres.
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cs
s1dsr d = −

1

kBT

] Fexfrb,rsg
] rssr d

, s12d

whereFexfrb,rsg is the free energy functional in excess of
the ideal gas contribution to the grand potential of the
platelet-sphere mixture andrssr d denotes the number density
of the spheres. For a given functionalFexfrb,rsg, one can
obtain the depletion potential from the one-body direct cor-
relation function in the limit of vanishing density of the
spheres. While for a binary hard sphere mixture a reliable
fundamental measure functional is available[18], at present
there is no similarly successful functional known for a
platelet-sphere mixture at arbitrary number densities. In view
of this state of the art we use the exact low-density, second-
virial functionalFexfrb,rsg [19], which leads to the following
approximate expression for the depletion potential:

−
Wsr d
kBT

=E dr1
3 dvfrsr 1,vd − rs`,vdgfspsr − r 1,vd,

s13d

where fspsr −r 1,vd is the Mayer function of the interaction
potential between a sphere and a platelet. The Mayer func-
tion equals −1 if the particles intersect or touch each other
and is zero otherwise.rsr 1,vd is the density profile of plate-
lets in the external potential of asingle fixed hard sphere
located at the origin of the coordinate system andrs` ,vd is
the corresponding density profile of the bulk fluid. We em-
phasize that the density profile entering Eq.(13) depends
only on equilibrium properties of the depletant fluid in the
absenceof the second hard sphere to be inserted at position
r . This observation simplifies the calculation ofWsr d consid-
erably, because the symmetry of the density profile is deter-
mined solely by the symmetry of the external potential of a
single sphere fixed at the origin of the coordinate system.

Apart from possible surface freezing at high densities,
nonuniformities of the density depend only on the radial dis-
tancer = ur u, so thatrsr ,vd=rsr ,vd. Hence, calculating den-
sity profiles before insertion of the second hard sphere is
much easier than after insertion, when the presence of the
second sphere leads to a more complex spatial variation of
the densities. A detailed discussion of Eq.(13) and its appli-
cation to the analogous case of noninteracting hard rods act-
ing as depletants is given in Ref.[19].

For an ideal gas of platelets in contact with a fixed hard
sphere the density profile reduces torsr1,vd−rs` ,vd
=rs` ,vdfspsr1,vd so that the integral in Eq.(13) has a
purely geometrical meaning and measures the excluded vol-
ume of a platelet confined between two hard spheres located
at the origin of the coordinate system and at positionr , re-
spectively.

In order to take intermolecular interactions between the
platelets into account we first calculate numerically the den-
sity profilersr ,vd of platelets in an external potential of one
fixed hard sphere of radiusRs. Thereafter the integral in Eq.
(13) is evaluated by inserting this density profile. To our
knowledge, this technique has not been used before forin-
teractingnonspherical colloids acting as depletants.

The orientational averaged density profile

rsrd =E dv rsr,vd s14d

of the platelet fluid in contact with one fixed hard sphere is
shown in Fig. 5 for various radiiRs of the sphere. Upon
increasingr ùRs from the surface of the sphere the averaged
number density increases and exhibits a cusp atr =Rs+Rp
where platelets with their normal perpendicular to the radial
direction touch the surface of the sphere with the rim. The
maximum at the cusp is about 25% above the bulk value
rbRp

3=0.085 for a size ratioRs/Rp=5 and is less pronounced
for smaller size ratios. The averaged density close to the
surface of the sphere is larger for a small sphere than for a
big one. Figure 6 displays the calculated depletion potential
for two size ratiosRs/Rp as a function of the separation
between the surfaces of the spheresh=r −2Rs. With decreas-
ing size ratio the range and the depth of the primary mini-
mum shrinks and the position of the small repulsive barrier
observed at higher densities shifts to smaller values ofh.
Moreover, the height of the repulsive barrier decreases upon
decreasing the size ratio. These results are due to the fact that
the number of platelets contributing to the depletion potential
decreases as the ratio of the radius of the spheres and the
platelets becomes smaller at a fixed bulk density(see Fig. 5).

In agreement with a recent theoretical study[2] based on
an evaluation of the excluded volume of a single platelet
confined between two hard spheres, we find that the Der-
jaguin approximation for the depletion potential in the pres-
ence of noninteracting platelets yields accurate results for
large size ratiosRs/Rp.1. However, there are substantial

FIG. 5. Orientationally averaged density profilersrd as obtained
from Eq.(14) for hard platelets of radiusRp in contact with a single
hard sphere of radiusRs located atr =0. The radius of the sphere
increases from left to right:Rs/Rp=0.5,1,3,5. Thearrows mark the
location of the surface of the sphere atr =Rs. Since the platelets are
arbitrarily thin their density is nonzero forr .RS. All curves exhibit
a cusp atr =Rs+Rp followed by a decay towards the bulk density
rbR

3=0.085, which is essentially reached atr =Rs+2Rp. When the
center of a platelet is located less thanRp from the sphere surface,
there are fewer possible orientations available to the platelet.
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deviations at higher densities as can be seen from Fig. 6(a).
The absolute valueuWsh=0du of the DFT solution at contact
is smaller than the one obtained from the Derjaguin approxi-
mation, and the repulsive barrier is less pronounced. For
Rs/Rp,1 and higher densitiesrb the DFT results deviate
strongly from the predictions for noninteracting platelets[see
rb

!=rbRp
3=0.2 in Fig. 6(b)].

In view of the significant difference between the DFT
results and the Derjaguin approximation shown in Fig. 6(a)
one may wonder if this is partly due to the fact that we have
used the low-density functional[Eq. (13)] within the DFT
framework. At the present stage we cannot answer this ques-
tion since the next higher-order virial term contributing to
the depletion potential would require the numerical evalua-
tion of a ten-dimensional integral, which is beyond the scope
of this study.

IV. SUMMARY

We have applied a density functional theory to fluids con-
sisting of thin hard platelets confined between two hard
spheres(Fig. 1). Within the framework of a second-order
virial approximation of the excess free energy functional, the
depletion potential between the two spheres due to the pres-
ence of the platelets is determined numerically and compared
with the corresponding results for noninteracting platelets.
The main conclusions which emerge from our study are as
follows.

(1) Figure 2 demonstrate that steric interactions between
thin platelets of radiusRp confined between two parallel hard
walls increase the sum of the surface and finite-size contri-
bution to the grand potential significantly already at rather
low platelet densitiesrbRp

3*0.025.
(2) As function of the slit widthh the finite-size contri-

bution to the grand potential of a slap of platelets exhibits a
minimum ath=0 [Fig. 3(a)]. A maximum at larger values of
h is found for higher platelet densities. The corresponding
solvation force is attractive for small slit widths and exhibits
a cusp ath=2Rp [Fig. 3(b)].

(3) The depletion potential between two spheres as cal-
culated from the Derjaguin approximation exhibits an attrac-
tive primary minimum at contact which deepens upon in-
creasing the platelet density. Moreover, a small repulsive
barrier at larger sphere separations develops with increasing
density(Fig. 4). We find that the depletion barrier relative to
zero is typically less than the thermal energykBT, and there-
fore unlikely to significantly alter the kinetics of aggregation
of the hard spheres at platelet densities smaller than one half
the density of the isotropic phase at bulk isotropic-nematic
coexistence. Nonetheless, with increasing platelet density the
integrated strength of the effective interaction between the
spheres becomes significantly weaker and thus reduces the
thermodynamic onset of flocculation.

(4) The orientational averaged density profile of a platelet
fluid in contact with a single fixed hard sphere decreases
towards the surface of the sphere because the range of acces-
sible orientations is reduced when the particle approaches the

FIG. 6. Depletion potentialWshd between two hard spheres of
radiusRs=3Rp in (a) and Rs=0.5Rp in (b) due to the presence of
thin hard platelets of radiusRp as obtained from Eq.(13). The bulk
densities of the platelets are:rb

!=rbRp
3=0.02 (top curves); rb

!

=0.08 (middle curves); rb
!=0.2 (bottom curves). Hereh=r −2Rs is

the separation between the surfaces of the spheres. The solid and
dashed lines represent the calculations for interacting(DFT) and
noninteracting platelets(ideal gas), respectively. In addition the
depletion potential as obtained from the Derjaguin approximation
[Eq. (5)] for interacting platelets is displayed by dotted lines in(a).
For the smallest bulk density the solid and dotted line nearly coin-
cide in (a). Since in (b) the spheres are only half as big as the
platelets, in this case the Derjaguin approximation is unsuitable and
therefore not shown. Only for sufficiently large densities a maxi-
mum denoted by a dot occurs. For reasons of clarity, the lower sets
of curves are shifted down by −0.3kBT and −0.9kBT, respectively, in
(a) and by −0.05kBT and −0.15kBT, respectively, in(b).
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sphere. It exhibits a cusp at the position where the platelets
lose contact with the surface of the sphere(Fig. 5). The
maximum at the cusp decreases and the averaged density
close to the surface increases as the ratio of the radius of the
sphere and the platelets becomes smaller.

(5) With decreasing ratio of the radius of the spheres and
the platelets, the primary minimum at contact and the small
repulsive barrier of the depletion potential diminish and the
position of repulsive barrier shifts to smaller values of the

separation of the surfaces of the spheres(Fig. 6). From our
numerical results based on a density functional theory for a
mixture of spheres and platelets we found that the Derjaguin
approximation is valid for large size ratio and very small
platelet density, but there are substantial deviations from the
density functional results at higher densities[Fig. 6(a)]. For
small size ratios and high platelet densities the ideal gas ap-
proximation for the platelets becomes unsuitable[Fig. 6(b),
rb

!=0.2].
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